博客
关于我
【读书1】【2017】MATLAB与深度学习——神经网络(1)
阅读量:212 次
发布时间:2019-02-28

本文共 670 字,大约阅读时间需要 2 分钟。

神经网络的学习规则与大脑的记忆机制存在显著差异。虽然大脑通过神经元之间的连接来存储信息,而计算机则依赖于存储器中的指定位置来储存数据,这两者在存储方式上有根本性区别。

神经元本身并不具备存储能力,它们仅负责将信号从一个神经元传递到另一个神经元。正是这种传递机制,使得大脑能够形成复杂的神经网络。这种网络通过神经元之间的连接,逐步构建起对特定信息的理解和记忆方式。

在神经网络中,节点之间的连接就像大脑中神经元的连接一样,通过这些连接,网络能够学习和记忆新的信息。值得注意的是,神经网络的核心机制是其所谓的"权值"。这些权值决定了不同输入信号对节点的影响程度,就像大脑中神经元之间的强度不同会影响信号传递一样。权值的设置直接影响着网络的学习效果和记忆能力。

权值和偏置是神经网络中最关键的概念。权值决定了输入信号的强度,而偏置则为每个节点提供了基本的活性。这些参数通过反向传播算法进行调整,使得网络能够适应新的任务和学习目标。

为了更直观地理解神经网络的工作原理,我们可以考虑一个简单的例子:一个接受三个输入信号的节点。每个输入信号在到达节点之前都会乘以一个特定的权值,这些加权后的信号再与偏置结合后,形成节点的最终输出。这种加权结合的方式,使得网络能够从大量的输入数据中提取有用的信息,并进行模式识别和数据处理。

通过以上分析可以看出,神经网络的核心在于其能够模拟大脑的学习和记忆机制。通过权值和偏置的调整,网络能够适应不断变化的环境,并完成复杂的任务。这种学习方式与大脑的记忆方式虽然在实现机制上有所不同,但都体现了非线性信息处理的能力。

转载地址:http://upop.baihongyu.com/

你可能感兴趣的文章
MySQL数据库与Informix:能否创建同名表?
查看>>
MySQL集群解决方案(4):负载均衡
查看>>
MySQL高级-视图
查看>>
nacos集群搭建
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
Netty WebSocket客户端
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>